Bibliografie

Detailansicht

Path Planning Strategies for Cooperative Autonomous Air Vehicles

Aerospace Series (PEP)
ISBN/EAN: 9780470741290
Umbreit-Nr.: 1803669

Sprache: Englisch
Umfang: 214 S.
Format in cm:
Einband: gebundenes Buch

Erschienen am 23.11.2010
Auflage: 1/2010
€ 119,00
(inklusive MwSt.)
Nachfragen
  • Zusatztext
    • InhaltsangabeAbout the Authors. Series Preface. Preface. Acknowledgements. List of Figures. List of Tables. Nomenclature. 1. Introduction. 1.1 Path Planning Formulation. 1.2 Path Planning Constraints. 1.3 Cooperative Path Planning and Mission Planning. 1.4 Path Planning - An Overview. 1.5 The Road Map Method. 1.6 Probabilistic Methods. 1.7 Potential Field. 1.8 Cell Decomposition. 1.9 Optimal Control. 1.10 Optimization Techniques. 1.11 Trajectories for Path Planning. 1.12 Outline of the Book. References. 2. Path Planning in Two Dimensions. 2.1 Dubins Paths. 2.2 Designing Dubins Path using Analytical Geometry. 2.3 Existence of Dubins Paths. 2.4 Length of Dubins Paths. 2.5 Design of Dubins Paths using Principles of Differential Geometry. 2.6 Path of Continuous Curvature. 2.7 Producing Flyable Clothoid Paths. 28 Producing Flyable Pythagorean Hodograph Paths (2D). References. 3. Path Planning in Three Dimensions. 3.1 Dubins Paths in Three Dimensions Using Differential Geometry. 3.2 Path Length - Dubins 3D. 3.3 Pythagorean Hodograph Paths - 3D. 3.4 Design of Flyable Paths Using PH Curves. References. 4. Collision Avoidance. 4.1 Research into Obstacle Avoidance. 4.2 Obstacle Avoidance for Mapped Obstacles. 4.3 Obstacle Avoidance of Unmapped Static Obstacles. 4.4 Algorithmic Implementation. References. 5. PathFollowing Guidance. 5.1 Path Following the Dubins Path. 5.2 Linear Guidance Algorithm. 5.3 Nonlinear Dynamic Inversion Guidance. 5.4 Dynamic Obstacle Avoidance Guidance. References. 6. Path Planning for Multiple UAVs. 6.1 Problem Formulation. 6.2 Simultaneous Arrival. 6.3 Phase I: Producing Flyable Paths. 6.4 Phase II: Producing Feasible Paths. 6.5 Phase III: Equalizing Path Length. 6.6 Multiple Path Algorithm. 6.7 Algorithm Application for Multiple UAVs. 6.8 2D Pythagorean Hodograph Paths. 6.9 3D Dubins Paths. 6.10 3D Pythagorean Hodograph Paths. References. Appendix A Differential Geometry. Appendix B. Pythagorean Hodograph. Index.

  • Kurztext
    • An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in the area of cooperative systems, cooperative control and optimization particularly in the aerospace industry. * Include chapters on path planning, 3-D path planning, cooperative path planning, path planning in complex environments as well as guidance for accurate path following and sense and avoid algorithms to deal with collision avoidance * Approaches the solution to UAV path planning via two phases: producing paths to meet curvature constraints - the flyable paths, and then tuning the flyable paths to meet the mission demands * Describes flyable path approaches using composite curves using Dubins and Clothoid principles, and continuous curves using Pythagorean Hodograph principles; and extends these approaches to cater for the complex problem of obstacle avoidance.

Lädt …