Bibliografie

Detailansicht

Cold Atoms in a Cryogenic Environment

Technology and Engineering
ISBN/EAN: 9783838128832
Umbreit-Nr.: 4742035

Sprache: Englisch
Umfang: 272 S.
Format in cm: 1.7 x 22 x 15
Einband: kartoniertes Buch

Erschienen am 04.07.2015
Auflage: 1/2015
€ 89,90
(inklusive MwSt.)
Lieferbar innerhalb 1 - 2 Wochen
  • Zusatztext
    • Two different ways of establishing cold atoms in a cryogenic 4K environment are shown. One scheme relies on electron induced desorption of rubidium at low temperatures, based on a high efficient, low power electron gun and a magneto optical trap (MOT). With this technology loading rates of the MOT, 1000x bigger compared to loading with a standard dipenser, when scaled by power, are found. The other ischeme s based on a superconducting magenetic transport over a large distance into a cryogenic 4K environment. Based on this methods, more than hundred millions of cold rubidium atoms at a temperature of about 50µK are transported into a cryogenic environment, capable of providing a superconducting atomchip and a coplanar microwave resonator. Furthermore, the shown concepts and experiments provide a roadmap to establish a hybrid quantum system with cold atoms and artificial superconducting transmon qubits, coupling an ensemble of cold rubidium atoms via a 6.8GHz hyperfine transition to photons in a superconducting microwave resonator.

  • Autorenportrait
    • The author is educated in electrical engineering and studied technical physics at the Vienna University of Technology. He worked on Rf-plasma jets and continued with his PhD studies in Jörg Schmiedmayers QuantumOptics Group in Vienna. In 2009 he received a fellowship of the austrian academy of science and finalized his Doctoral studies in 2011.
Lädt …