Bibliografie

Detailansicht

Applications of Synchrotron Radiation

ISBN/EAN: 9789401066648
Umbreit-Nr.: 5648750

Sprache: Englisch
Umfang: 400 S.
Format in cm:
Einband: kartoniertes Buch

Erschienen am 21.09.2011
Auflage: 1/1990
€ 53,49
(inklusive MwSt.)
Lieferbar innerhalb 1 - 2 Wochen
  • Zusatztext
    • Synchrotron radiation became available in a routine and regular manner to the scientific community in the early 1980s. Since that time the use of techniques employing synchrotron radiation has proliferated, so that the unique properties of this form ofelectromagnetic radiation are now having a major impact on several areas of physical and biological sciences. Not only have several new techniques become available but new opportunities with existing methodologies, e.g. diffraction, have been opened up. In this book we providea surveyofsomeofthemostimportantapplications ofsynchrotron radiation, with astrongemphasison the fields ofchemistry and materials science. An introduction to the properties of the radiation and its instrumentation is given in chapter 1. The following chapters describe the use ofsynchrotron radiation in high resolution powder diffraction for structural studies of crystalline materials and in diffraction topography for imaging defects in single crystals. The role of EXAFS in investigations of amorphous and disordered crystalline solids and ofbiological systems is highlighted. The important enhancements to surface science techniques offered by synchrotron radiation are then reviewed. Later chapters describe more specialist applic ations, including trace-element analysis, protein crystallography, X-ray microscopy, and atomic and molecular spectroscopy.

  • Autorenportrait
    • Inhaltsangabe1 Synchrotron radiation instrumentation.- 1.1 Introduction.- 1.2 Synchrotron radiation sources.- 1.2.1 Collimation, intensity and polarisation.- 1.2.2 Brilliance and time structure.- 1.2.3 Insertion devices.- 1.3 Mirror optics.- 1.3.1 Total external reflection.- 1.3.2 Toroids and cylinders.- 1.3.3 Filters and windows.- 1.3.4 Multilayers.- 1.4 Monochromators.- 1.4.1 Crystal monochromators.- 1.4.2 Grating monochromators.- 1.5 Detectors.- 1.5.1 Low energy resolution detectors.- 1.5.2 Detectors with high energy resolution.- 1.5.3 Photoelectron analysers.- 1.5.4 Multidetectors.- 1.6 Experimental layouts.- 1.6.1 X-ray absorption spectroscopy.- 1.6.2 X-ray diffraction.- 1.6.3 UV photoemission.- References.- 2 X-ray diffraction from powders and crystallites.- 2.1 Introduction.- 2.2 X-ray diffraction: basic features.- 2.3 Synchrotron radiation and powder diffraction.- 2.4 Instrumentation.- 2.4.1 Angle dispersive scans.- 2.4.2 Energy dispersive studies.- 2.5 Applications.- 2.5.1 High resolution powder diffraction.- 2.5.2 Time-resolved (or kinetic) crystallography.- 2.5.3 High pressure studies.- 2.5.4 Anomalous dispersion studies.- 2.5.5 Studies of surface films.- 2.6 Single crystal studies.- 2.6.1 Microcrystalline diffraction.- 2.6.2 Laue methodologies.- 2.7 Summary and conclusion.- References.- 3 X-ray topography.- 3.1 Introduction.- 3.2 Dispersion and absorption according to the dynamical theory of X-ray diffraction: an overview.- 3.3 Topographic techniques and contrast formation mechanisms.- 3.3.1 Integrated intensity techniques.- 3.3.2 Pseudo plane wave techniques.- 3.4 Crystal growth defects.- 3.5 Dislocation analysis: integrated intensity techniques.- 3.6 Dislocation analysis and strain mapping: plane wave imaging.- 3.7 From the analysis of one-dimensional strains to the precise location of impurity atoms.- 3.8 Applications of X-ray topography to the study of solid state reactions.- 3.9 Conclusion.- References.- 4 Small angle X-ray scattering and the study of microemulsions.- 4.1 Introduction.- 4.2 SAXS hardware requirements.- 4.2.1 Monochromator.- 4.2.2 Collimation.- 4.3 Experiments on AOT microemulsions.- 4.3.1 High angle limit.- 4.3.2 Scattering from practical systems.- References.- 5 Time-resolved small angle X-ray scattering on polymers.- 5.1 Introduction.- 5.2 SAXS and polymers.- 5.3 Time-resolved SAXS in polymer crystallisation and annealing.- 5.4 Model polymers: ultra-long n.- 5.5 Phase separation in liquid polymer mixtures.- 5.6 Simultaneous diffraction and calorimetry experiments.- References.- 6 EXAFS and structural studies of glasses.- 6.1 Introduction.- 6.2 Basic principles of EXAFS.- 6.2.1 The EXAFS function.- 6.2.2 Structural information in EXAFS.- 6.3 EXAFS data analysis.- 6.3.1 Real space analysis.- 6.3.2 k-space analysis.- 6.4 The structure of oxide glasses.- 6.4.1 Network modifiers in silicate glasses.- 6.4.2 Intermediates in silicate glasses.- 6.4.3 Alkali germanate glasses.- 6.4.4 Corrosion studies of silicate glasses.- References.- 7 EXAFS studies of ionically conducting solids.- 7.1 Introduction.- 7.2 Ionic conductivity in solids.- 7.3 Silver iodide.- 7.4 Rare-earth doped alkaline earth fluorides.- 7.5 Cubic stabilised zirconia and bismuth oxide.- 7.5.1 Cubic stabilised ZrO2.- 7.5.2 Rare-earth doped bismuth oxide.- 7.6 Mixed fluorides.- 7.7 Polymer electrolytes.- 7.8 Summary.- References.- 8 Applications of EXAFS to the study of metal catalysts.- 8.1 Introduction.- 8.2 Sampling methods.- 8.3 Homogeneous transition metal catalysts.- 8.4 Surface organometallic species.- 8.5 Oxide supported metal ion sites.- 8.6 Oxide supported metallic catalysts.- 8.7 Oxide supported alloy catalysts.- 8.8 Concluding comments.- References.- 9 Looking at solid surfaces with synchrotron radiation.- 9.1 Introduction.- 9.2 Surface science: the tools.- 9.3 Advantages of the synchrotron source.- 9.4 Photoemission.- 9.4.1 Valence level photoemission.- 9.4.2 Angle resolved photoemission.- 9.4.3 Core level photoemission.- 9.5 X-ray abso
Lädt …